ÓBUDA UNIVERSITY, BUDAPEST

SSL CERTIFICATES

Keszthelyi.Andras@kgk.uni-obuda.hu

INTRODUCTION

KESZTHELYI András PhD Óbuda University,

Keleti Károly Faculty of Economics

Keszthelyi.Andras@kgk.uni-obuda.hu

Ask questions whenever you need!

(Or whenever you think you need:)

Question

•What is the title of this lesson?

STRUCTURE

- •Want to hide your data?
- One-key encryption
- Two-key encryption
- Certificates
- Known problems

Want to hide your data?

- close your computer
- close the door
- use strong passwords
- ••••

encryption

STRUCTURE

- •Want to hide your data?
- One-key encryption
- Two-key encryption
- Certificates
- Known problems

One-key encryption

- •examples
- security rules
 - key is real random series
 - must be kept in secret
- big question
- need a secure channel for key exchange
- remark: more sophisticated methods exist

- •This is the key:
 - $-A = \dagger$
 - B = ⊲
 - C = **೫**
 - etc.

- •Which is the most frequent sign?
- Letter frequency in the language

- •Key: 3 (shift right)
 - -A=C
 - -B=D
 - -C=E
 - etc.
- Which is the most frequent sign?Letter frequency in the language

Key: 34 (shift right)

- -A=C or D
- -B=D or E
- C=E or F
- etc.

•This is the plain text 3434 34 343 34343 4343 ???? ?? ??? ????? ????

•Key: 34 (shift right)

- -A=C or D
- -B=D or E
- C=E or F
- etc.

•This is the plain text 3434 34 343 34343 4343 W

•Key: 34 (shift right)

- -A=C or D
- -B=D or E
- -C=E or F
- etc.
- •This is the plain text
- 3434 34 343 34343 4343

W

If you have enough captured text?

•key: the longer the better

•key: the longest the best

Security rules

- •key: real random series
- kept in secret
- => 100% secure
- X + Y = Z

Question

 Have you ever read a book "800 miles on the Amazon"?

Have you ever read a book
 written by Jules Verne?

Big question

Alice & Bob have their own keys

- real random series each
- kept in absolute secret (if exists;)
- Alice encrypts
- Bob also encrypts
- Alice decrypts
- Bob decrypts and reads

Big question

Alice & Bob have their own keys

– KeyA & KeyB

?

text + KeyA
text + KeyA + KeyB
text + KeyA + KeyB - KeyA =
text + KeyB - KeyB = text

Big question

Alice & Bob have their own keys

- KeyA & KeyB
- msg1: text + KeyA msg2: text + KeyA + KeyB postman: msg2 - msg1 = text
- So?

Secure channel for key exchange

•if the key must be kept in secret...

...you need a secure channel

- practically: personal meeting
- In the bottom of the copper mine?
- If the other guy lives in New-Zealand?

Less or more sophisticated methods do exist

STRUCTURE

- •Want to hide your data?
- One-key encryption
- •Two-key encryption
- Certificates
- Known problems

Tow-key encryption

secure channeltheoretical background

- example: dictionary
- breakable Hard enough, so who cares?
- prime factorization
- how it works
- digital signature

security rules

- secret (private) key must be kept in secret
- collected public keys must be checked
- •MITM

Secure channel

- •for key exchange
- •if the other guy lives in New-Zealand
- expensive
- •so we'd like to get rid of

Example

no need for a secure channel
for key exchg
pair of dictionaries

Example

- no need for a secure channel for key exchg
- pair of dictionaries
 - Serbian-English: public key place it at Yellow Gulliver everyone can use it
 - English-Serbian: secret key the only copy is at home your dog stands guard
- replace Serbian words of your message

Breakable

- capture an encrypted message
- go to Yellow Gulliver
- •search it => You can find

the decryption!

Breakable

- •~1.200 pages
- you must carefully read 600 pages
- approx. to decrypt one word
- •100 word long message:
- 6.000 pages to read
- So what if it is breakable?

Breakable

So what if it is breakable? Hard enough, so who cares?

Prime factorization

 real method based on prime factorization

much-much more secure

Prime factorization

- •Try!
- Multiply two 100 digit prime numbers
- •Find the factors of the result!

- •for the exact math background see: Wikipedia, e.g. •pair of keys are generated public (P) and secret (S) one encrypts, other decrypts (and vice versa)
- (secret OR private key)

coding [coding(text,P), S] = text OR

coding [coding(text,S), P] = text

coding [coding(text,P), S] = text OR

coding [coding(text,S), P] = text SO:

public key can be distributed

secret key must be kept in secret

- Alice wants to send an ecrypted msg
- to Bob which key will she use?
- A: her own secret
- B: her own public
- C: Bob's public
- D: Bob's secret

How it works

Bob received an encrypted msg
 from Ann – which key will he use?

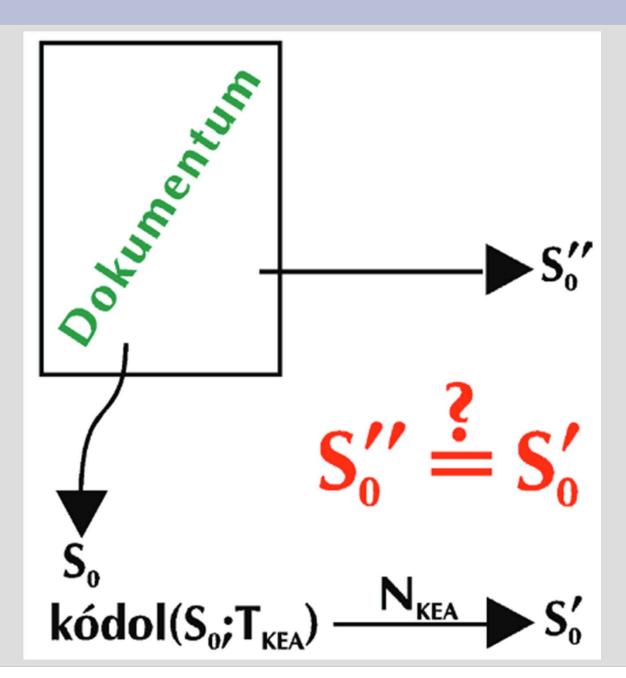
- A: his own secret
- B: his own public
- C: Ann's public
- D: Ann's secret

Digital signature

Ann wants Bob to be sure the message

is really from her

 She can encrypt the message with her own secret key, too


Digital signature

Better solution:

•instead of whole docu you encrypt

only a cheksum of the docu

Digital signature

Security rule 1.

Secret key must be kept in total secret!

•if not, others may...

- read our messages
- digitally sign docus instead of us

Security rule 2.

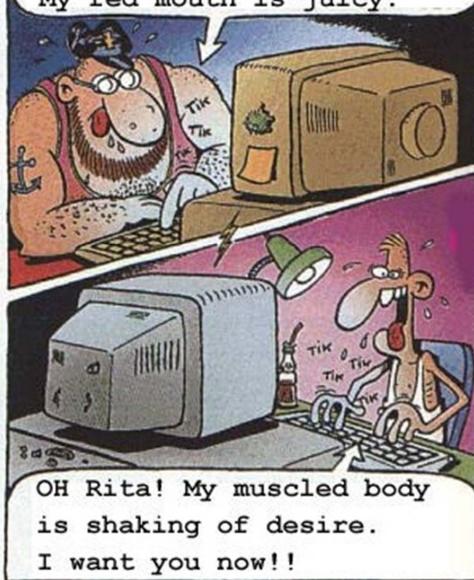
Collected

public keys

must be checked!

•Why?

Security rule 2.


Collected

public keys

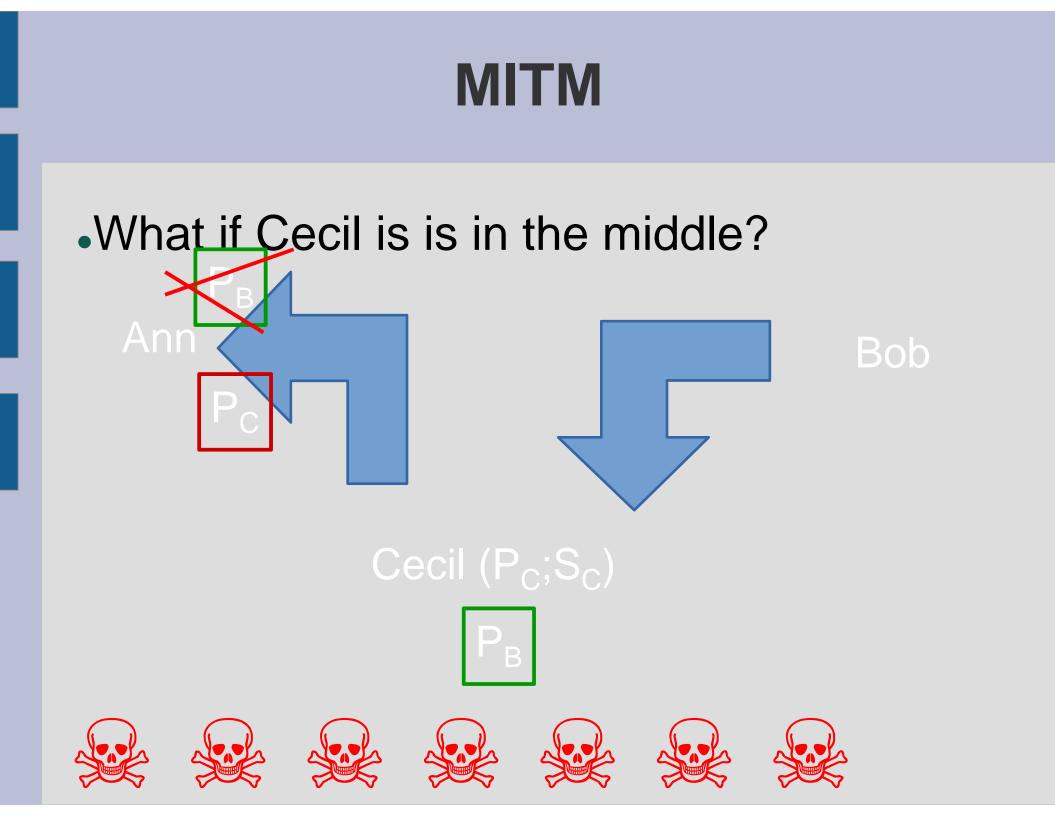
must be checked!

- •Why?
- •For this:

I got long blond hair up to my big breasts. My red mouth is juicy.

- •Man In The Middle
- Monkey In The Middle
- when the other guy is not the one you think
 he is

Alice (P_A;S_A) & Bob (P_B;S_B)
Alice wants to send
an encrypted msg to Bob
What does she need for that?


Alice (P_A;S_A) & Bob (P_B;S_B)
Alice wants to send
an encrypted msg to Bob
What does she need for that?
Bob's public key, P_B.

•Bob's public key, P_B, can be sent via email

....can be?

•What if Cecil is is in the middle?

•You must carefully check whether the collected public keys really belong to the person you think they belong to!

MITM – check public keys

- •Get personally from them
- •Get via many different channels
- •Build the web of trust:

•Alice has the authentic public key of Bob.

•Alice has the authentic public key of Bob.

•Cecil is close to Bob.

- Alice has the authentic public key of Bob.
- •Cecil is close to Bob.
- Cecil can put his personal data and his public key into a document.

- Alice has the authentic public key of Bob.
 Cecil is close to Bob.
- •Cecil can put his personal data and his public key into a document.
- Bob can sign this document
- means: described person
- and public key belong to each other.

- Alice has the authentic public key of Bob.
 Cecil is close to Bob.
 Cecil can put his personal data and his
- public key into a document.
- Bob can sign this document
- means: described person
- and public key belong to each other.
- Alice can check the signature...

- Chain of trust web of trust
- No need for central organization

STRUCTURE

- •Want to hide your data?
- One-key encryption
- Two-key encryption
- Certificates
- Known problems

standard docu format for automatic key exchange


Certificate <u>F</u> ields	
Not Before	
Not After	
Subject	
😴 Subject Public Key Info	
Subject Public Key Algorithm	
Subject's Public Key	
✓Extensions	
Certificate Key Usage	
Certificate Basic Constraints	
Certificate Subject Key ID	
Certificate Authority Key Identifier	•
Field <u>V</u> alue	
Modulus (2048 bits):	
ad Oe 15 ce e4 43 80 5c b1 87 f3 b7 60 f9 71 12	
a5 ae dc 26 94 88 aa f4 ce f5 20 39 28 58 60 0c	
f8 80 da a9 15 95 32 61 3c b5 b1 28 84 8a 8a dc	
9f 0a 0c 83 17 7a 8f 90 ac 8a e7 79 53 5c 31 84	
2a f6 Of 98 32 36 76 cc de dd 3c a8 a2 ef 6a fb 21 f2 52 61 df 9f 20 d7 1f e2 b1 d9 fe 18 64 d2	
12 52 51 di 91 20 d7 11 e2 51 d9 1e 18 64 d2	

Certificate Authorities, CA

- •See in Firefox, e.g.
- Preferences / Advanced / Certificates
- contains a lot of authentic root CERTs

in case of anhttpS connection:

- CERT of other side is acquired
- if it is among the stored ones, OK.
- if not, its signature is checked
- (etc.)

- •if there is an error message,
- it is **YOU**, who must check the situation
- (and the certificate).
- •You must be sure that the other side is the one you think it should be, e.g. your bank!

STRUCTURE

- •Want to hide your data?
- One-key encryption
- Two-key encryption
- Certificates
- •Known problems

Known problems

- human factor social engineering
- browser CERTs are tampered with
- a few organizations can probably break it

ADVICES

- Learn what you can knowledge is power!
- •Believe in God AND keep gunpowder dry!

•in other words:

- 100% security level does not exist.
- •You want to be as close to it as possible.

